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My background



Cerenkov in monolithic BGO
A simulation study in GATE
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Cerenkov emission
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Cerenkov in monolithic BGO

Figures from: https://ocw.mit.edu/courses/12-091-medical-geology-geochemistry-an-exposure-january-iap-2006/
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Cerenkov emission
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Cerenkov in monolithic BGO
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Cerenkov emission
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Cerenkov in monolithic BGO
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Cerenkov detection
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Cerenkov in monolithic BGO



Cerenkov detection
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Cerenkov in monolithic BGO

Spread out over 8x8 (64) SiPMs

→ Unlikely to detect > 1 Cerenkov photons per SiPM

→ Requires triggering below the single photoelectron level 



The Walk-Through PET
A flat panel LAFOV PET design based on monolithic detectors
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The team in Belgium
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The Walk-Through PET

Stefaan Vandenberghe Christian Vanhove Nadia Withofs Florence Muller

Maya Abi Akl Meysam Dadgar Jens Maebe Boris Vervenne



• Design and current state

• NEMA system characterization

• Image reconstruction

• Remaining challenges
• Limited angle artefacts

• CT-less attenuation correction

• XCAT lesion detectability
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The Walk-Through PET

Outline



Design and current state
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Total-Body PET
Design and current state

Increased sensitivity
• Better image quality
• Lower dose scans
• Shorter scans

Single bed position scanning
• Dynamic imaging

Increased system cost
• Fixed costs: CT, data/reconstruction server, …
• Scales linearly with AFOV: scintillators, SiPMs, electronics

Patient throughput remains limited
• Sub one-minute scans become possible 
→ patient preparation becomes limiting factor

SAFOV PET

LAFOV PET
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Walk-Through PET
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Design and current state

50 cm

74 cm

106 cm

106 cm

Quadra

82 cm

WT-PET

Reduced system cost
• Decreased detector coverage (≈ 1/2)
• Use of monolithic detectors
• BGO scintillators

Increased patient throughput
• Aiming for 30 s acquisitions

Dimensions based on CT-scans from PET patients
106 cm AFOV: simultaneous head + torso imaging



Monolithic detectors
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Design and current state

Spatial resolution:
• 2D: 1.3 mm
• DOI: 2 mm
TOF resolution:
• 327 / 400 ps
Energy resolution:
• 15 %
Maximum countrates:
• 1 Mcps
• 370 ns deadtime

50 mm

50 mm

16 mm

8x8 SiPM array

BGO

*

*Based on experimental results from Pisa



Current state
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Design and current state

• Fundamental system/detector design
• Simulations for system characterization
• Software development

• System integration (electronics, mechanical)
• Cooling system
• End-user usability

• Provides the electronic readout: TOFPET2 ASIC



Sparse LYSO configuration
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Design and current state

Pisa, BGO PETsys, LYSO
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Sparse LYSO configuration
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Design and current state



NEMA system characterization
A comparison with Quadra based on GATE simulations
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Sensitivity
NEMA system characterization

70 cm source 
(center)

Sensitivity 
(simulated) 
cps/kBq

Sensitivity 
(experimental) 
cps/kBq

WT-PET 154.0 -

Quadra (MRD 85) 87.0 82.6

Quadra (MRD 322) 179.7 175.3
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Scatter fraction
NEMA system characterization

Simulated Experimental

WT-PET 
(offset along panels)

30.72 %

WT-PET 
(offset towards panels)

29.58 %

Quadra 
(MRD 85)

34.80 % 36 %

Quadra 
(MRD 322)

36.18 % 37 %

Includes patient bed
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Count rates
NEMA system characterization
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GATE settings:
• Coincidence sorter: allPulseOpenCoincGate
• Multiples policy: takeAllGoods

MRD 322MRD 85

Prenosil et al.



Spatial resolution
NEMA system characterization
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• In warm background
• No background
• No background



Spatial resolution: detector smearing
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NEMA system characterization



Spatial resolution
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NEMA system characterization

(10, 0, 0) cm



Spatial resolution: NEMA point sources
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NEMA system characterization



Spatial resolution: additional point sources
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NEMA system characterization



Spatial resolution: additional point sources
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NEMA system characterization



Spatial resolution: additional point sources
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NEMA system characterization



Image quality: visual
NEMA system characterization
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• 4:1 activity ratio
• 30 s acquisition
• trues only



Image quality: contrast recovery
NEMA system characterization
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Image quality: additional lesions
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NEMA system characterization



Image reconstruction
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• Iterative listmode reconstruction on the GPU

• Written in Julia
• High level but fast (similar speed to C++)

• Good support for GPU programming with CUDA 

• Good support for deep learning

• Supports auto differentiation

• Implementations for:
• Emission tomography (MLEM)

• Transmission tomography (MLTR)

• Simultaneous estimation of activity and attenuation (MLAA)

Image reconstruction

PETRecon
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PETRecon
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Image reconstruction

Siddon’s algorithm

- Thread 1
- Thread 2
- Thread 3
- Thread 4

GPUCPU
GPU

Slice-based raytracing



PETRecon
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Image reconstruction

Row major Column major Block major
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• Male XCAT phantom (BMI=22.7)
• 30 s acquisition
• trues only
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Limited angle artefacts
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Angular coverage
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Limited angle artefacts

224°/360° = 62%

259°/360° = 72%



Angular coverage
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Limited angle artefacts



Impact of TOF
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Limited angle artefacts



Rotating configuration
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Limited angle artefacts

50 cm 70 cm

180°/30s



Rotating configuration
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Limited angle artefacts



Rotating configuration
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Limited angle artefacts

• Remove limited angle artefacts

• Reduced sensitivity (about 33% lower)
• Increased system complexity
• Decreased patient throughput

→ Other solution may be preferable (e.g. AI based)



Deep learning artefact correction
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Limited angle artefacts

2D - UNet

Artefact correction as a post-processing step



Deep learning artefact correction
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Limited angle artefacts

ො𝑥 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝑓 𝐻𝑥 + 𝑒, 𝑦 + 𝜆𝑅 𝑥 𝑅 𝑥 = 𝑥 − 𝐹(𝑥) 2

Artefact correction as a regularization step

data consistency regularization Artefact correcting neural network



Deep learning artefact correction
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Limited angle artefacts

Iteration 1 Iteration 2 Iteration 3

Network needs to be trained on a wide variety of inputs!



Deep learning artefact correction
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Limited angle artefacts

TOF binned 
sinogram

Filtered 
back projection

Forward 
projection

• Randomize TOF
• Randomize angular range

• Add Poisson noise (randomized magnitude)
• Add Gaussian blur (randomized sigma)

Training pairs



CT-less attenuation correction
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• Transmission based – MLTR 

• Emission based – MLAA 

• Deep learned (Florence)
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CT-less attenuation correction

Available methods
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CT-less attenuation correction

Transmission based

8x 3MBq Ge-68 transmission sources

3MBq → 10% of maximum detector count rate



Transmission based
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CT-less attenuation correction

compare

attenuation map

TOF difference does not 
match transmission sources

Endpoints do not match 
transmission sources

Can be done simultaneously with emission scan

But for the purpose of simulation done separately



Transmission based: stationary WT-PET
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CT-less attenuation correction

MLTR MLEM
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+17%
+3%
+3%
-7%
+8%
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Transmission based: rotating WT-PET
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CT-less attenuation correction

MLTR MLEM



Emission based
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CT-less attenuation correction

𝜇 fixed, update 𝜆
MLEM update

𝜆 fixed, update 𝜇
MLTR update

Maximum likelihood activity and attenuation (MLAA):

For TOF PET: attenuation / activity determined up to a constant
→ Additional constraint required (e.g. injected activity)



Emission based: stationary WT-PET
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CT-less attenuation correction

fixed configuration
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+12%
+10%

+9%
-16%
-14%



Emission based: rotating WT-PET
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CT-less attenuation correction

rotating configuration



• MLTR
• Better accuracy of activity map

• Faster reconstruction

• MLAA
• Reduced system complexity

• Better reconstruction of attenuation map (for fixed configuration)
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CT-less attenuation correction

Comparison



Comparison
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CT-less attenuation correction

MLEM

MLAAMLTR

• B = blank scan
• T = transmission scan
• E = emission scan
• I = space of possible LORs



XCAT lesion detectability
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• TBR: 8:1, 4:1, 2:1
• Only 8:1 shown here

• Lesion size (diameter): 10 mm, 7 mm, 5 mm

• Location: liver, lung, breast
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XCAT lesion detectability

Lesion parameters



Transverse slices

70

XCAT lesion detectability

BMI = 18.64 BMI = 22.71
BMI = 18.64

BMI = 22.47 BMI = 20.02

BMI = 34.53 BMI = 31.22 BMI = 28.22 BMI = 36.74

BMI = 22.47

BMI = 36.74



Coronal slices
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XCAT lesion detectability

BMI = 18.64 BMI = 22.71 BMI = 22.47 BMI = 20.02

BMI = 34.53 BMI = 31.22 BMI = 28.22 BMI = 36.74



Sagittal slices

72

XCAT lesion detectability

BMI = 18.64 BMI = 22.71 BMI = 22.47 BMI = 20.02

BMI = 34.53 BMI = 31.22 BMI = 28.22 BMI = 36.74



TBR values, female
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XCAT lesion detectability

BMI = 18.64

BMI = 22.47

BMI = 36.74



TBR values, male
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XCAT lesion detectability

22.71

20.02

34.53

31.22

28.22



Motion study
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V1: optical cameras
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Motion study



V2: Infrared camera
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Motion study
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y

x

z



Motion artefact reduction
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Motion study

1. Reduce motion as much as possible 2. Correct for motion during reconstruction

1 s 2 s 3 s …

Listmode data

Motion data

Reconstruction

Reconstruction
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