Image reconstruction for the Walk-Through PET system

Jens Maebe

Belgium

Costa Rica

• Engineering Physics at Ghent University

- Engineering Physics at Ghent University
- Master thesis at Kyushu University
 - Molecular dynamics and (S)TEM to study nanoparticles

- Engineering Physics at Ghent University
- Master thesis at Kyushu University
 - Molecular dynamics and (S)TEM to study nanoparticles
- Data Science consultant at Devoteam
 - Fraud detection with deep learning and graph theory

- Engineering Physics at Ghent University
- Master thesis at Kyushu University
 - Molecular dynamics and (S)TEM to study nanoparticles
- Data Science consultant at Devoteam
 - Fraud detection with deep learning and graph theory
- PhD at Ghent University
 - Time of flight in monolithic PET detectors
 - Image reconstruction for the WT-PET

Cerenkov in monolithic BGO

A simulation study in GATE

Cerenkov in monolithic BGO Cerenkov emission

Cerenkov in monolithic BGO

Cerenkov emission

	# Cerenkov photons
Compton scattered	10
Purely photoelectric	17
Average	13

Compton scattered Photoelectric effect 511 keV e ionization 420 keV $v_{e^{-}} > c$ 50 keV $v_{e^-} < c$

0 keV

Purely photoelectric

9

Cerenkov in monolithic BGO Cerenkov emission

Cerenkov in monolithic BGO Cerenkov detection

lateral surfaces 1.0 1.0 Broadcom NUV-MT PDE Cerenkov BGO Cerenkov LYSO scintillation BGO 0.8 0.8 ---- scintillation LYSO reflectance 0.6 0.6 PDE 0.4 rough black (BGO) rough black (LYSO) 0.4 0.2 rough bare (BGO) rough bare (LYSO) polished grease ESR (BGO) polished grease ESR (LYSO) 0.2 back surfaces 20 40 60 80 0 angle of incidence (°) 1.00 polished grease (BGO) polished grease (LYSO) rough grease (BGO) 0.0 rough grease (LYSO) 500 600 700 800 900 300 400 0.75 wavelength (nm) reflectance 0.50 0.25 0.00

60

80

40

angle of incidence (°)

20

0

л 1.0

0.8

^{0.6}), vield (a.u.)

0.2

0.0

Cerenkov in monolithic BGO Cerenkov detection

Spread out over 8x8 (64) SiPMs

- \rightarrow Unlikely to detect > 1 Cerenkov photons per SiPM
- \rightarrow Requires triggering below the single photoelectron level

The Walk-Through PET

A flat panel LAFOV PET design based on monolithic detectors

The Walk-Through PET The team in Belgium

Stefaan Vandenberghe

Christian Vanhove

Nadia Withofs

Florence Muller

Maya Abi Akl

Meysam Dadgar

Jens Maebe

Boris Vervenne

The Walk-Through PET Outline

- Design and current state
- NEMA system characterization
- Image reconstruction
- Remaining challenges
 - Limited angle artefacts
 - CT-less attenuation correction
- XCAT lesion detectability

Design and current state Total-Body PET

Increased sensitivity

- Better image quality
- Lower dose scans
- Shorter scans

Single bed position scanning

• Dynamic imaging

Increased system cost

- Fixed costs: CT, data/reconstruction server, ...
- Scales linearly with AFOV: scintillators, SiPMs, electronics

Patient throughput remains limited

Sub one-minute scans become possible
→ patient preparation becomes limiting factor

Design and current state Walk-Through PET

Dimensions based on CT-scans from PET patients 106 cm AFOV: simultaneous head + torso imaging

Increased patient throughput

• Aiming for 30 s acquisitions

Design and current state Monolithic detectors

*

Spatial resolution:

- 2D: 1.3 mm
- DOI: 2 mm

TOF resolution:

• 327 / 400 ps

Energy resolution:

• 15 %

Maximum countrates:

- 1 Mcps
- 370 ns deadtime

Current state

- Fundamental system/detector design
- Simulations for system characterization
- Software development

- System integration (electronics, mechanical)
- Cooling system
- End-user usability

• Provides the electronic readout: TOFPET2 ASIC

Sparse LYSO configuration

Sparse LYSO configuration

	Centered	Off center at X = 10cm	Off center at Y = 10cm
Sensitivity (kcps/MBq) Full detector coverage	150	121	117
Sensitivity (kcps/MBq) Sparse 70% coverage	77	63	60

A comparison with Quadra based on GATE simulations

Quadra (70 cm source)

-20

0

axial position (cm)

20

40

60

- 0 cm (85 MRD)

Sensitivity

0 -20 0 20 40 60 axial position (cm)	70 cm source (center)	Ser (sin cps
Quadra (106 cm source)	WT-PET	
(322 MRD) — 0 cm (85 MRD) n (322 MRD) — 10 cm (85 MRD)	Quadra (MRD 85)	
	Quadra (MRD 322)	

70 cm source (center)	Sensitivity (simulated) cps/kBq	Sensitivity (experimental) cps/kBq		
WT-PET	154.0	-		
Quadra (MRD 85)	87.0	82.6		
Quadra (MRD 322)	179.7	175.3		

Scatter fraction

	Simulated	Experimental		
WT-PET (offset along panels)	30.72 %			
WT-PET (offset towards panels)	29.58 %			
Quadra (MRD 85)	34.80 %	36 %		
Quadra (MRD 322)	36.18 %	37 %		
Includes patient bed				

Count rates

Prenosil et al.

NEMA system characterization Spatial resolution

Spatial resolution: detector smearing

NEMA system characterization Spatial resolution

Spatial resolution: NEMA point sources

Scannor	Source Position		FWHM (mm)			FWTM (mm)		
Scallier	(cm)		х	У	Z	х	У	Z
		(1, 0, 0)	1.20	1.62	1.30	2.87	4.14	3.06
	Center	(10, 0, 0)	1.16	1.90	1.12	2.81	4.83	2.89
		🔻 (20, 0, 0)	1.17	1.94	1.19	2.60	4.36	2.81
		(1, 0, 39.75)	1.14	2.13	1.24	2.86	5.22	3.20
	3/8 of AFOV	(10, 0, 39.75)	1.21	2.48	1.29	3.19	7.11	3.06
		\star (20, 0, 39.75)	1.26	2.52	1.05	2.08	5.58	2.08
W/T_PET								
		(0, 1, 0)	1.18	1.75	1.34	2.43	3.79	2.54
	Center	(0, 10, 0)	1.22	1.92	1.33	2.54	4.20	2.54
		\dagger (0, 20, 0)	1.32	2.25	1.41	2.71	7.08	2.71
		(0, 1, 39.75)	1.29	2.24	1.16	2.58	5.71	2.59
	3/8 of AFOV	(0, 10, 39.75)	1.52	2.71	1.46	2.91	6.54	3.35
		🕈 (0, 20, 39.75)	1.65	3.36	1.88	3.76	8.18	3.96
		. (1 0 0)	0.55	0.00	0.05	F (0	C 45	7 00
	Carta	(1, 0, 0)	2.55	2.62	2.85	5.08	0.45	7.03
	Center	(10, 0, 0)	3.70	3.27	2.95	1.24	7.98	1.18
Quadra 322 MRD		▼ (20, 0, 0)	5.24	3.97	3.62	10.39	9.39	8.03
		(1, 0, 39.75)	2.09	2.35	2.24	4.70	5.70	4.68
	3/8 of AFOV	(10, 0, 39.75)	2.78	3.14	2.89	5.85	7.64	5.03
		(20, 0, 39.75)	4.63	3.31	3.20	8.61	6.81	5.70
		• (1 0 0)	2.62	2 70	2 72	F 02	5 66	1 82
Quadra 85 MRD	Contor	(1, 0, 0)	2.02	2.70	2.12	5.02	5.00 6.43	4.02 5.86
	Center	(10, 0, 0)	2.00	2.12	2.10	0.00	0.45	5.00
		(20, 0, 0)	2.24	5.40 2.44	2.94	9.21	5.71	J.19 A QA
	$2/9$ of ΛEOV	(1, 0, 39.75)	2.22	∠.44 3.02	2.40	4.00	5.71 6.67	4.04 5.05
	S/O ULAFUV	(10, 0, 39.75)	3.31	3.02	2.71	0.33	10.07	5.95 E 00
		V (20, 0, 39.75)	4.29	2.00	2.23	0.00	10.78	5.ŏ2

Spatial resolution: additional point sources

Spatial resolution: additional point sources

Spatial resolution: additional point sources

NEMA system characterization Image quality: visual

- 4:1 activity ratio
- 30 s acquisition
- trues only

Image quality: contrast recovery

Image quality: additional lesions

PETRecon

- Iterative listmode reconstruction on the GPU
- Written in Julia
 - High level but fast (similar speed to C++)
 - Good support for GPU programming with CUDA
 - Good support for deep learning
 - Supports auto differentiation
- Implementations for:
 - Emission tomography (MLEM)
 - Transmission tomography (MLTR)
 - Simultaneous estimation of activity and attenuation (MLAA)

PETRecon

Siddon's algorithm

- Thread 1
- Thread 2
- Thread 3
- Thread 4

Slice-based raytracing

GPU

PETRecon

- Male XCAT phantom (BMI=22.7)
- 30 s acquisition
- trues only

Limited angle artefacts

Limited angle artefacts Angular coverage

224°/360° = **62%**

Limited angle artefacts Angular coverage

Limited angle artefacts Impact of TOF

Limited angle artefacts

Rotating configuration

Limited angle artefacts Rotating configuration

Limited angle artefacts

Rotating configuration

- Remove limited angle artefacts
- Reduced sensitivity (about 33% lower)
- Increased system complexity
- Decreased patient throughput
- \rightarrow Other solution may be preferable (e.g. AI based)

Limited angle artefacts Deep learning artefact correction

Limited angle artefacts Deep learning artefact correction

Artefact correction as a **regularization** step

$$\hat{x} = argmin_{x}[f(Hx + e, y) + \lambda R(x)]$$
data consistency regularized

regularization

$$R(x) = \|x - F(x)\|_2$$

Artefact correcting neural network

Limited angle artefacts Deep learning artefact correction

Network needs to be trained on a wide variety of inputs!

Limited angle artefacts

Deep learning artefact correction

- Randomize angular range
 - Add Poisson noise (randomized magnitude)
 - Add Gaussian blur (randomized sigma)

CT-less attenuation correction Available methods

- Transmission based MLTR ←
- Deep learned (Florence)

Transmission based

8x 3MBq Ge-68 transmission sources

$3MBq \rightarrow 10\%$ of maximum detector count rate

CT-less attenuation correction Transmission based

Can be done simultaneously with emission scan

But for the purpose of simulation done separately

Transmission based: stationary WT-PET

fixed configuration

x (mm)

Transmission based: rotating WT-PET

70 cm

CT-less attenuation correction Emission based

Maximum likelihood activity and attenuation (MLAA):

For TOF PET: attenuation / activity determined up to a constant → Additional constraint required (e.g. injected activity)

Emission based: stationary WT-PET

fixed configuration

Emission based: rotating WT-PET

rotating configuration

Comparison

• MLTR

- Better accuracy of activity map
- Faster reconstruction
- MLAA
 - Reduced system complexity
 - Better reconstruction of attenuation map (for fixed configuration)

CT-less attenuation correction Comparison

MLTR

MLEM

$$\lambda_j^{(k+1)} = rac{\lambda_j^{(k)}}{\displaystyle{\sum_{i \in I}} H_{ij}} \displaystyle{\sum_{i \in E}} rac{H_{ijt}}{\displaystyle{\sum_{j' \in J} H_{ij't} \lambda_{j'} + r_i + s_i}}$$

- B = blank scan
- T = transmission scan
- E = emission scan
- I = space of possible LORs

MLAA

$$a_i^{(k)} = \exp\left(-\sum_{j\in J} l_{ij} \mu_j^{(k)}
ight)$$

$$\lambda_j^{(k+1)} = rac{\lambda_j^{(k)}}{\displaystyle{\sum_{i\in I}}a_i^{(k)}c_{ij}}\displaystyle{\sum_{i\in E}}rac{c_{ijt}}{\displaystyle{\sum_{j'\in J}c_{ij't}\lambda_{j'}^{(k)}}}$$

$$ar{y}_i^{(k+1)} = a_i^{(k)}\sum_{j\in J}c_{ij}\lambda_j^{(k+1)}$$

$$\mu_{j}^{(k+1)} = \mu_{j}^{(k)} - \frac{\sum_{i \in E} l_{ij} - \sum_{i \in I} l_{ij} \bar{y}_{i}^{(k+1)}}{\sum_{i \in I} \left(l_{ij} \bar{y}_{i}^{(k+1)} \sum_{j' \in J} l_{ij'} \right)}$$

XCAT lesion detectability

XCAT lesion detectability Lesion parameters

- TBR: 8:1, 4:1, 2:1
 - Only 8:1 shown here
- Lesion size (diameter): 10 mm, 7 mm, 5 mm
- Location: liver, lung, breast

XCAT lesion detectability Transverse slices

XCAT lesion detectability Coronal slices

XCAT lesion detectability Sagittal slices

XCAT lesion detectability

TBR values, female

BMI = **18.64**

BMI = 22.47

XCAT lesion detectability TBR values, male

Motion study

Motion study

V1: optical cameras

Motion study V2: Infrared camera

Motion study

Motion artefact reduction

1. Reduce motion as much as possible

2. Correct for motion during reconstruction

